Features
- 60 W Typical PSAT
- 28 V Operation
- High Breakdown Voltage
- High Temperature Operation
- Up to 8 GHz Operation
- High Efficiency
Cancer & Reproductive Harm – www.p65warnings.ca.gov
Product SKU | Buy Online | Request Sample | Data Sheet | CAD Model | Recommended For New Design? | Technology | Frequency Min | Frequency Max | Peak Output Power | Gain | Efficiency | Operating Voltage | Form | Package Type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CG2H80060D-GP4 | Yes | GaN on SiC | DC | 8 GHz | 60 W | >12 dB | 70% | 28 V | Discrete Bare Die | Die |
Document Type | Document Name |
---|---|
Application Notes | |
Application Notes | |
Application Notes | |
Application Notes | |
Data Sheets | |
S-parameters | |
S-parameters | |
Technical Papers & Articles | by Raymond S. Pengelly – William Pribble – Thomas Smith
This Simulation of power amplifiers (PAs) for modern wireless base station and small cell systems is an essential part of the design process. At a cell site – the PA consumes the bulk of the dc power – generates the most heat – and thus represents the greatest operational cost. Maximum PA efficiency is a necessity to manage these costs – which is a sizeable challenge in a PA that also must be highly linear to support the complex multilevel modulation types and wide bandwidths used for current and developing wireless transmission standards. Accurate simulation allows the PA designer to meet these challenges by exploring the available design options and then optimizing the circuit that is selected for the application.
|
Technical Papers & Articles | by David A. Calvillo; Leo C.N. de Vreede; Michel de Langen – A power-scalable – efficient and very wideband GaN class-E high-power amplifier is described. The large bandwidth performance is achieved by employing the so-called “class-E with parallel-circuit” loading conditions using a very compact all-lumped element implementation. The fundamental loading is realized by the magnetizing inductance of a novel bondwire-based transformer connected directly at the transistor drain. The PA input and output matching networks are entirely implemented with bondwire inductors and MOS/MIM capacitors.
|
Technical Papers & Articles | by Raymond S. Pengelly – Simon M. Wood – James W. Milligan – Scott T. Sheppard – and William L. Pribble
|
Technical Papers & Articles | by Raymond S. Pengelly – Brad Millon – Donald Farrell – Bill Pribble – and Simon Wood
Presentation from the 2008 IEEE MTT-S International Microwave Symposium (IMS) Workshop on Challenges in Model-Based HPA DesignThis presentation discusses attributes of GaN HEMTs – Wolfspeed GaN HEMT models – design examples (Broadband CW Amplifiers and Linear WiMAX Amplifier) – and future model improvements.
|
Technical Papers & Articles | by Donald A. Gajewski – Scott Sheppard – Simon Wood – Jeff B. Barner – Jim Milligan – and John Palmour.
This paper discusses the reliability performance of Wolfspeed GaN/AlGaN high electron mobility transistor (HEMT) MMIC released process technologies – fabricated on 100 mm high purity semi-insulating (HPSI) 4H-SiC substrates.
|
Technical Papers & Articles | by Donald A. Gajewski – Scott Sheppard – Tina McNulty – Jeff B. Barner – Jim Milligan and John Palmour
This paper reports the reliability performance of the Wolfspeed – GaN/AlGaN HEMT MMIC process technology – fabricated on 100 mm high purity semi-insulating (HPSI) 4H-SiC substrates.
|
Product Catalog | |
Sales Terms |