RF and microwave solid-state power amplifiers design requires specialised engineering

By Ivan Boshnakov, Anna Wood, Simon Taylor, Amplifier Technology Ltd

In the world of RF and microwave engineering, the design and development of solid-state amplifiers is a specialty. It has always required many years of specialised engineering experience and a suitable collection of test and measurement equipment. While these will always be necessary, to be successful in the marketplace today, it is also essential to use a combination of specialised and general CAD tools.

The RF and microwave design software we use has removed much of the risk and guess work from creating a new amplifier design. For us, the software design tools have transformed the process of designing an amplifier in terms of speed, substantially shortening the product design cycle and massively improving the probability that the new device will perform as specified at the first attempt.

In the last 10 years or so wide bandgap transistors (SiC MESFETs and GaN HEMTs) have appeared on the market for high power RF/microwave transistors. They offer higher power density and higher voltage operation, which in turn are associated with much lower parasitic capacitances and much higher load-line dynamic resistance, and hence wider bandwidth applications. Of the two kinds the GaN HEMTs offer higher gain performance and became dominant on the market. However, the much wider bandwidth matching networks could not be designed optimally with the traditional Smith Chart and optimisation techniques [1]. The new requirements for broadband high power and high efficiency performance require new and more sophisticated matching networks synthesis techniques such as the real frequency technique [4], [7].

The design software for the RF and microwave amplifiers

The most important part of the design relies upon extensive use of two RF/microwave software programs which are used in tandem [5]. These are the MultiMatch Amplifier Design Wizard and the general simulator/optimizer Microwave Office [7], [8].

In MultiMatch the designer uses the powerful real frequencies synthesis technique for lossy and lossless matching network design to achieve the optimum performance from the RF/microwave transistors [4], [7]. The designer can also use the new power parameters (a properly and fully defined load-line approach) to design power amplifiers [2], [3], [4], [6]. MultiMatch is like a massive amplifier design template where the creation of the schematics

Figure 1: Extraction of design data in Microwave Office.

Figure 2: Fitting linear model to the S-parameters in MultiMatch.

Figure 3: MultiMatch layout.
and layouts is mostly automated to take away most of the boring click-and-drag work with the mouse. Then, with only a few clicks of the mouse, the designed networks are transferred into Microwave Office [8]. The use of MultiMatch is a major departure from the usual Smith Chart matching network design techniques and provides the designer with much higher creativity and productivity.

The networks created this way are then analysed further, and optimised if necessary in Microwave Office using its powerful linear, nonlinear and EM simulation engines. Very often the design actually starts in Microwave Office where the design data (linear models and/or Load-Pull impedances) are extracted for the design process in MultiMatch. Microwave Office is the friendliest RF/microwave simulation software on the market and provides the highest productivity for small size companies.

The final RF layout created in Microwave Office is then transferred to Altium Designer in which the control and power supply circuits are designed first and then full PCB schematics, layout and Bill of Materials are produced.

The mechanical design is done using SolidWorks. Solidworks and Altium, used together are probably the two most productive tools that small companies can use to create the full drawings and documentation.

The design process

The design process could be started in Microwave Office if there is a nonlinear model of the transistor to be used. Figure 1 shows a basic schematic from which we can determine the capabilities of the transistor and the impedances which have to be presented to the transistor for required performance.

It is also possible, with different set-ups, to simulate IV curves and load-pull contours at frequencies of interest for power, efficiency, linearity, etc., etc.

In cases where a very broadband amplifier stage is required – let’s say 0.5- to 2.5-GHz with 45 W Cree GaN HEMT – Figure 1 can be used to extract S-parameters at a biasing point for half the maximum current of the transistor (Imax/2).

Then the S-parameters are imported into MultiMatch where a linear model is fitted to them – Figure 2.

Now, when the maximum current and voltage areas (clipping boundaries) on the IV curves are defined, the novel power parameters are used to synthesize the load impedances for maximum pre-clipped power - the output networks on the right in Figure 3. Then the input lossy (with resistors) and lossless matching and gain equalizing networks are synthesized (on the left in Figure 3).

The layout is manipulated with great ease to the desired shape, and then with a few clicks of the computer mouse the schematic and the layout are exported into Microwave Office (Figure 4). The creation of schematics and layouts are mostly automated in MultiMatch, which saves hours and hours of dragging elements in Microwave Office. Then, in Microwave Office the microstrip discontinuities are fully simulated, either by electromagnetic models or full electromagnetic simulation of parts of the layout. The harmonic balance simulation is used to simulate the power levels of fundamental and harmonic signals, the associated gain and gain compression, currents and voltages, efficiency, etc. Using these simulations some small adjustments would usually be done to achieve the best possible performance.

In the fully designed amplifier the stage discussed above is doubled in parallel and combined with hybrid couplers to form a balanced configuration.

There are three more driver stages designed in the same fashion. The layout of the finalized RF/microwave circuits is imported into Altium Designer and Figures 5 and 6 show the full mechanical and PCB design using Altium and SolidWorks.

Figure 4: The layout in Microwave Office.

![Image](image1)

Figure 5: Overall final look of the amplifier after Altium and SolidWorks design process.

Figure 6: The photo of the product.

![Image](image2)

Figure 7: Measured Small Signal Gain and Gain at Psat.
During the testing of the early prototypes, some tuning and adjustments are typically made to the RF and DC/control circuitry, but after the design is finalised, usually very little tuning is done during regular production.

Large parts of the tests during prototype qualifications and tests in production are automated. This helps to shorten the development time and improves productivity. The automated tests are done using standard measurement equipment used with specially built test fixtures and software.

Figure 7 and 8 show comparisons of the measured and simulated small signal gain and the gain at full compression. The results are in very good agreement. The measured output saturated power is above 48 dBm across the 0.5- to 2.5-GHz frequency band and is again in very good agreement with the simulation.

Conclusions

Nowadays, you have to design fast and get it “Right First Time” to have any hope of commercial success. The trend is to make amplifiers that are smaller, with higher operational bandwidth, higher power and efficiency, and higher linearity to provide better value for money. An amplifier of the complexity discussed above typically needs to be ready for delivery to the customer in as few as 10 to 12 weeks after the order has been placed, even though the amplifier is often developed from scratch. To provide that kind of service requires specialised knowledge and experience and also specialised engineering development and production tools.

References

8. Microwave Office is a registered trademark of Applied Wave Research, Inc.

Advanced software tool for PA characterization and visualization

Nujira has released an advanced measurement and data visualization tool for characterizing RF power amplifiers (PAs) in Envelope Tracking (ET) mode. Designated ET Surface Explorer, it accelerates PA characterization, provides PA and product designers greater insight into the performance of ET PAs, and enables them to maximize the linearity, efficiency and output power benefits of operating PAs in ET mode.

The software’s advanced workflow provides a massive productivity boost, replacing thousands of complex, repetitive and time-consuming lab measurements with a single measurement pass, which typically takes less than two minutes to capture and process. ET Surface Explorer lets designers visualize how PAs behave under live ET supply modulation conditions, unlocking the optimum performance and efficiency characteristics of a given PA. Postprocessing and offline analysis tools create 3D surfaces of gain, phase and efficiency, to give designers far greater insight into ET PA performance. The tool can also automatically generate, model and export a wide variety of shaping tables, including ISOGAIN or Maximum Efficiency.

ET Surface Explorer’s offline analysis and modeling tools allow the designer to rapidly predict and compare application performance from the comfort of their desk, without requiring multiple test iterations in the lab. The user simply loads an input waveform from disk, specifies the RF power level and selects a shaping table or DC supply voltage. ET Surface Explorer then uses the captured PA surface model to accurately predict adjacent channel leakage ratio (ACLR), efficiency, AM/AM and AM/PM distortion, power dissipation and other parameters in seconds. Selected scenarios can then be re-verified in hardware, and compared against the predictions of the model.

www.nujira.com

Copyright © 2012 MEE. Reprinted from Microwave Engineering Europe, July-August 2012

This material is posted here with permission of MEE and Amplifier Technology. Such permission of the MEE does not in any way imply MEE endorsement of any of Cree’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from MEE by writing to jean-pierre.joosting@eetimes.be. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.