Skip to Main Content
浏览产品 (中文)
Silicon Carbide

Evolution of Silicon Carbide in Power Electronics

Nov 24, 2019
  • Share on Facebook
  • Share on Twitter
  • Share on LinkedIn
  • Share in an email

In our latest installment of the BaSiCs of Silicon Carbide (SiC), we are delving into the world of power electronics as we investigate how Silicon Carbide components have come to define the industry.

Research into Silicon Carbide as a semiconductor has directly supported the evolution of even more efficient, reliable, wide bandgap power electronics. But what exactly are power electronics, and why are they important?

What Are Power Electronics?

The term power electronics refers to solid-state electronic devices used for the conversion and control of electric power. Modern power electronics includes devices such as MOSFETs (Metal-oxide Semiconducting Field-Effect Transistors) and IGBTs (Insulated-Gate Bipolar Transistor) as well as inverters (DC to AC), rectifiers (AC to DC), and converters (AC to AC, DC to DC). These power electronics are an indispensable part of modern technology, but the earliest form of these components could well be unrecognizable to most engineers today.

First Power Electronics

Early power electronics were far different from what we see today in terms of size, capability, and functionality. One of the earliest examples of power electronics was the mercury-arc value developed in 1902 to convert AC to DC. Mercury continued in wide use for rectifiers and power transmission until the introduction of Selenium electronics in the early 1930s.

Selenium (Se) began to be replaced by Silicon (Si) in power electronics around the mid-1950s.

In fact, Silicon, Gallium Arsenide (GaAs), and Gallium Nitride (GaN) were the primary semiconductors used in power electronics for many years. The next big change in power electronics would be the use of Silicon Carbide (SiC).

MOSFETs were originally developed in the late 1950s but were not suitable for use in power electronics until the 1970s. IGBTs were then introduced in the early 1980s but did not become widely available until the 1990s.

Silicon Carbide Comes into Its Own

NASA was looking at using Silicon Carbide (SiC) semiconductors as early as the 1990s, but the major hurdle to widespread acceptance of SiC in place of Si was the actual fabrication of these devices, including identifying effective ways to grow pure SiC crystals. However, in the early 2010s, SiC power electronics truly came into their own (and continue to evolve today).

In 2011, we launched the first commercial SiC power MOSFET. Then, in 2016, Wolfspeed released an all-SiC high-performance commercial half-bridge power module and gate driver combination. Wolfspeed now makes Silicon Carbide, SiC MOSFETS, and SiC power modules.

Silicon Carbide power electronics support emerging industries such as renewable power (including solarthermal, and wind power), EV/HEV power systems, and electric trains, buses, and other types of public transportation. They can also be found on uninterruptible power supplies (UPS), industrial electronics, and motor drives. In addition, devices made with Silicon Carbide components exhibit greater efficiency, take up less space, weigh less, and do not require extensive cooling systems.

Why Silicon Carbide is Important to Power Electronics

The introduction of SiC as a semiconductor has significantly impacted power electronics, including higher voltages, higher switching frequencies, a wider bandgap, extreme temperature tolerance, and low resistance -- all of which are key to the continued development of effective power electronics and the designs that depend on them.

With some of the most BaSiC parts of SiC discussed over these last few blogs, we’ll now start taking a look at some specific applications in our next few posts!

Technical Support
Power Applications Forum
Sales Support
Stay Informed
SpeedFit Design Simulator
Technical Support
Sales Support
Stay Informed
SpeedFit Design Simulator

More Articles

View All
Silicon Carbide

In The Studio: Challenges and Solutions in Scaling Up Silicon Carbide Production

Silicon Carbide raises the bar for what the world’s innovators can achieve, but there are unique challenges to producing it in high volume. Join Guy Moxey and Cengiz Balkas, Wolfspeed Materials Senior VP & GM, for a look at how Wolfspeed’s first-hand experience has made us an industry leader in the production of high-quality Silicon Carbide.
Continue Reading 
 In The Studio

Unlock a New Era of EV Efficiency with Wolfspeed Silicon Carbide

Electric vehicle adoption is growing exponentially and factors like climate change are driving a global shift to emissions-free motoring. Reaching true net zero requires a shift in how we engineer EV powertrains as well as the effectiveness of the systems that we use to charge them. Learn more about the advantages of Wolfspeed Silicon Carbide technologies in EVs.
Continue Reading 

The Batteries that Power EVs

This chapter of Wolfspeed’s What’s Under the Hood series shines the light on the powerhouse of BEVs — the battery pack — to reveal cell characteristics, battery chemistries, and architectures, as well as hazards, protections, and control.
Continue Reading 


Wolfspeed Logo

Social Media

  • Facebook
  • Twitter
  • LinkedIn
  • YouTube
Copyright © 2022 Wolfspeed, Inc.