Contact
中文
MOSFETs

解析适用于 SiC 栅极驱动的 PCB 布局方法

Dave Skinner & Yuequan Hu
Jan 19, 2021
English
Share on FacebookShare on TwitterShare on LinkedInShare in an email
首页
解析适用于 SiC 栅极驱动的 PCB 布局方法

在为任一高功率或高电压系统设计印刷电路板 (PCB) 布局时,栅极驱动电路特别容易受到寄生阻抗和信号的影响。对于碳化硅 (SiC) 栅极驱动,更需认真关注细节,因为其电压和电流的转换速率通常比硅快得多。遵循指定 PCB 设计指南,可以帮助减少这些常见隐患并消除实验室或现场故障。

SiC 功率电路的优点和注意事项

SiC 功率电子器件的主要优点是开关频率高、导通损耗低、效率更高且热管理系统更简单。与硅基转换器相比,由于 SiC 功率系统具有这些优势,因此能够在要求高功率密度的应用(如太阳能逆变器、储能系统 (ESS)、不间断电源 (UPS) 和电动汽车)中优化性能。但是,由于高电压转换速率 (dv/dt) 和电流转换速率 (di/dt) 是 SiC 功率器件的固有特性,使其与硅基电路相比,这些电路对串扰、误导通、寄生谐振和电磁干扰 (EMI) 更为敏感。(图 1)。

图 1:高电压和电流转换速率所产生影响的概要。

将功率 MOSFET 并联时,设计人员必须更密切地注意如何最大限度降低这些影响,因为器件之间的电流分配不均会影响性能。例如,在开关瞬变过程中,在并联中增加一个器件会使 di/dt 倍增,从而可能导致更大的电压过冲。此外,任何寄生电感都可能产生与反馈机制耦合的谐振,从而只会使电流不平衡的情况变得更糟。在这种情况下,PCB 设计人员必须特别注意要降低寄生电感。

电路板寄生现象对 SiC 电路的负面影响

首先,SiC MOSFET 具有理想的固有低寄生电容(CGD, CDS, CGS)。这种特性支持高开关频率,因此有助于实现高功率密度设计。但是,与这种好处如影随形的是,在布局中不可避免地容易受到寄生电感谐振影响的情况。寄生电感本身可存在于应用电路的栅极回路(LGS) 和功率回路 (LDS) 以及共源极电感 (LCS)之中。如之前所述,导致这些电感的因素包括走线长度很长,以及器件引线之间的电感。

栅极回路电感会增加栅极电压的振铃,这反过来又会增加导通延迟,并且在某些情况下,会导致 MOSFET 的漏极-源极电压发生振荡振铃。通常,应最大限度地减小栅极回路电感以避免 MOSFET 的误工作,但这种寄生电感的影响是三种主要寄生电感中最小的。

整个器件的过冲电压通常由功率回路电感(有时也称为开关回路电感)造成,而这会产生高开关损耗。共源极电感会在开关瞬变过程中产生对栅极驱动的电压反馈,抵消栅极电压的变化并减慢漏极电流,从而显著增加导通和关断时的开关损耗。1 此外,并联器件之间微小的寄生 LCS 不匹配情况也会在开关瞬变过程中造成电流不平衡,从而放大负栅电压反馈的影响。

设计 PCB 时,不可能完全消除所有寄生电感和电容。但是,一些常用技术可以帮助最大限度地减小这些电感和电容。

应对 SiC 栅极驱动布局方面的挑战

使功率曲线远离栅极回路

典型情况下,在单层PCB 上布线的功率回路通常被称为“横向功率回路”。而第一个内层用作“屏蔽层”,以减少功率回路中高开关频率所产生的磁场的影响(图 2)。功率回路中的脉冲电流在屏蔽层内催生出电流和磁场,从而抵消功率回路中的电流和磁场。最终,由于有效地减小了功率回路和栅极驱动回路内包含的面积,这将降低寄生电感。

最大限度地缩短栅极驱动和 MOSFET 之间的距离

任一栅极回路电感都会与输入电容产生谐振,并产生栅极-源极电压振荡,从而导致漏极-源极电压振铃。将栅极驱动放置在紧邻 SiC MOSFET 的位置,以最小的走线长度将栅极回路电感降至最低。此外,这种做法还有助于使各并联 MOSFET 设计之间的共源极电感保持恒定。

以最小走线长度使 PCB 布局保持对称

最大程度地缩短高频率栅极回路和功率回路的周长,以减少电压过冲和可能由该过冲引起的任何 EMI,是十分关键的。这对于并联器件尤其重要,因为寄生电感本来就更高。如图 2 所示,用于并联 MOSFET 的对称栅极驱动路径可实现更均匀的电流分布。

图 2:通过消除电流回路中的磁场并进行对称走线布局,以降低寄生电感的影响

将小电容器置于栅极和源极之间

与硅基电路相同,通过在栅极和源极之间放置去耦电容器,可以最大限度地减少由瞬态信号引起的栅极电压尖峰。该电容为栅极驱动电流提供一个低阻抗路径,从而减小 VGSVGS 的升幅。但是,这会减慢栅极驱动信号,从而增加开关损耗。因此,应调整 CGS 的值以平衡损耗和瞬态抗扰度。

增加 EMI 滤波器或缓冲器

可以通过增加 RC 缓冲器或铁氧体磁珠等组件来实现有效的 EMI 抑制。沿(漏极和源极之间的)DC 总线连接的 RC 缓冲器将吸收漏极处的寄生振铃或电压过冲。在高频率下,与栅极串联放置的高电阻、低电感铁氧体磁珠,可有效抑制栅极处的寄生谐振。此寄生振荡由漏极-源极电压瞬变引起,该瞬变在栅极电路上生成电压,有可能会在栅极引脚处的电容和寄生电感(LC 谐振腔)之间引起谐振。铁氧体磁珠可抑制这种振荡,而不会对开关性能产生负面影响。

对于基于 SiC 的布局需要额外注意的事项

SiC 基功率电子器件的布局方法在许多方面类似于硅基电路。在这些布局操作中要格外小心,才能最终解决快速开关功率器件的各类问题挑战,使得设计人员能够在其功率应用中充分利用 SiC 的所有优点。

参考资料

  1. Z. Chen, D. Boroyevich and R. Burgos, "Experimental parametric study of the parasitic inductance influence on MOSFET switching characteristics," The 2010 International Power Electronics Conference - ECCE ASIA -, Sapporo, 2010, pp. 164-169, doi: 10.1109/IPEC.2010.5543851.
File Download

Technical Support
Power Applications Forum
Sales Support
Stay Informed
SpeedFit Design Simulator
Technical Support
Sales Support
Stay Informed
SpeedFit Design Simulator

More Articles

View All
Power
|
企業電源

寻找适用的技术解决数据中心电源挑战

Continue Reading 
 Technical Articles

碳化硅技术如何赋能离线式开关模式电源

Considering an offline PFC to today's 80+ highest efficiency standards or a 3 phase bidirectional grid tied active front end; maybe looking at a dc-dc switching at 1Mhz or debating going discrete or module. This whitepaper will walk through relevant SiC based system architectures to achieve such designs – all achieving higher efficiency, higher power density and lower system cost. 500W to 100kW we will consider it all with topology examples, results and design considerations.
Continue Reading 
 Technical Articles
Wolfspeed Logo
FacebookTwitterLinkedInYouTube
  • Contact
  • Where to Buy
  • Document Library
  • Knowledge Center
  • News
  • Events
  • Privacy Policy
  • Terms of Use
Copyright © 2022 Wolfspeed, Inc.