Contact
中文
Home
CG2H30070

CG2H30070

CG2H30070F GaN HEMT
70-W; 0.5-3.0 GHz; GaN HEMT
Request Model Access

Wolfspeed’s CG2H30070F is a gallium-nitride (GaN) High Electron Mobility Transistor (HEMT). It has an input match to deliver the best possible instantaneous broadband performance from 0.5-3.0 GHz. GaN has superior properties compared to silicon or gallium arsenide; including higher breakdown voltage; higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This device is available in a 2-lead metal/ceramic flanged package for optimal electrical and thermal performance.

Product SKU
Buy Online
Request Sample
Data Sheet
Recommended For New Design?
Technology
Frequency Min
Frequency Max
Peak Output Power
Gain
Efficiency
Operating Voltage
Form
Package Type
CG2H30070F
Yes
GaN on SiC
0.5 GHz
3 GHz
80 W
15 dB
55%
28 V
Packaged Discrete Transistor
Flange
CG2H30070F-AMP2
Yes
GaN on SiC
0.5 GHz
3 GHz
80 W
15 dB
NA
28 V
Evaluation Board
Flange
Product SKU
Buy Online
Request Sample
Data Sheet
Recommended For New Design?
Technology
Frequency Min
Frequency Max
Peak Output Power
Gain
Efficiency
Operating Voltage
Form
Package Type
CG2H30070F
Yes
GaN on SiC
0.5 GHz
3 GHz
80 W
15 dB
55%
28 V
Packaged Discrete Transistor
Flange
CG2H30070F-AMP2
Yes
GaN on SiC
0.5 GHz
3 GHz
80 W
15 dB
NA
28 V
Evaluation Board
Flange
Features
  • 0.5 – 3.0 GHz Application Circuit
  • 85 W POUT typical at 28 V
  • 10 dB Power Gain
  • 58% Drain Efficiency
  • Internally Matched
Applications
  • Broadband Amplifiers
  • Electronic Counter Measures
  • Signal Jamming
  • Milcom
  • Radar
  • Data Link
Apply Filters
Document Type
Document Name
Application Notes
Application Notes
Application Notes
Application Notes
Data Sheets
Design Files
Design Files
Technical Papers & Articles
by Raymond S. Pengelly – Simon M. Wood – James W. Milligan – Scott T. Sheppard – and William L. Pribble
Technical Papers & Articles
by Donald A. Gajewski – Scott Sheppard – Tina McNulty – Jeff B. Barner – Jim Milligan and John Palmour
This paper reports the reliability performance of the Cree – Inc. – GaN/AlGaN HEMT MMIC process technology – fabricated on 100 mm high purity semi-insulating (HPSI) 4H-SiC substrates.
Technical Papers & Articles
by Ildu Kim – Jangheon Kim – Junghwan Moon – Jungjoon Kim – and Bumman Kim
Demonstrating a highly efficient Hybrid Envelope Elimination and Restoration transmitter for IEEE 802.16e Mobile WiMAX applications using a highly efficient saturated Power Amplifier (PA). For the optimum H-EER operation – the PA has been designed to have a maximum PAE at the average Vds region by using 10 W (P3dB ) GaN High Electron Mobility Transistor.
Product Ecology
CG2H30070F – CGHV59070F
Product Ecology
CG2H30070F – CGHV59070F
Product Catalog
Sales Terms
Document Type
Document Name
Application Notes
Application Notes
Application Notes
Application Notes
Data Sheets
Design Files
Design Files
Technical Papers & Articles
by Raymond S. Pengelly – Simon M. Wood – James W. Milligan – Scott T. Sheppard – and William L. Pribble
Technical Papers & Articles
by Donald A. Gajewski – Scott Sheppard – Tina McNulty – Jeff B. Barner – Jim Milligan and John Palmour
This paper reports the reliability performance of the Cree – Inc. – GaN/AlGaN HEMT MMIC process technology – fabricated on 100 mm high purity semi-insulating (HPSI) 4H-SiC substrates.
Technical Papers & Articles
by Ildu Kim – Jangheon Kim – Junghwan Moon – Jungjoon Kim – and Bumman Kim
Demonstrating a highly efficient Hybrid Envelope Elimination and Restoration transmitter for IEEE 802.16e Mobile WiMAX applications using a highly efficient saturated Power Amplifier (PA). For the optimum H-EER operation – the PA has been designed to have a maximum PAE at the average Vds region by using 10 W (P3dB ) GaN High Electron Mobility Transistor.
Product Ecology
CG2H30070F – CGHV59070F
Product Ecology
CG2H30070F – CGHV59070F
Product Catalog
Sales Terms
Need information?
Ready to buy?
Find a Distributor
Want to keep in touch?

Knowledge Center

View All
highpower_wideband_lband_image
GaN on SiC

Thermal Considerations for X-Band MMICs Under CW Operation

Join Kasyap Patel of Wolfspeed for a live webinar on September 20th as we discuss GaN on SiC MMIC solutions to thermal concerns for next generation radar systems during continuous wave (CW) operation.
Register Now 
 Webinars
RF PA 101_amplifier classes image
GaN on SiC

RF Power Amplification 101: Amplifier Classes

The purpose of the RF PA is to increase the power of the RF input signal. This is achieved by applying the signal to the gate. This article compares some of the common amplifier classes, starting with the most-linear but least-efficient Class A to the still-linear (due to the ideal transistor) but more-efficient Class F and inverse-F.
Continue Reading 
 Technical Articles
Jamming man-portable pack2
GaN on SiC

Countering RCIEDs with GaN’s Bandwidth & Power Density Advantages

Counter-RCIED devices used by the military and law enforcement rely on jamming wireless trigger signals. This article will discuss how GaN’s high-temperature reliability and power density capability enables jammer equipment to meet system SWaP-C requirements.
Continue Reading 
 Blog
Cree Wolfspeed Logo
FacebookTwitterLinkedInYouTube
  • Contact
  • Where to Buy
  • Document Library
  • Knowledge Center
  • News
  • Events
  • Privacy Policy
  • Terms of Use
Copyright © 2021 Cree Wolfspeed