Contact
中文
Home
CMPA601J025D

CMPA601J025D

cmpa601j025d_600w_blurred
25-W; 6.0 – 18.0-GHz; 22 V; GaN MMIC Power Amplifier
Request Model Access

Wolfspeed’s CMPA601J025D is a gallium-nitride (GaN) high-electron-mobility transistor (HEMT)-based monolithic microwave integrated circuit (MMIC) on a silicon carbide substrate; using a 0.15-μm gate-length fabrication process. GaN on SiC has superior properties compared to silicon; gallium arsenide or GaN on Si; including higher breakdown voltage; higher saturated electron d-rift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si; GaAs; and GaN on Si transistors. This MMIC contains a reactively matched amplifier design approach enabling very wide bandwidths to be achieved.

Product SKU
Buy Online
Request Sample
Data Sheet
Recommended For New Design?
Technology
Frequency Min
Frequency Max
Peak Output Power
Gain
Efficiency
Operating Voltage
Form
Package Type
CMPA601J025D
Yes
GaN on SiC
6 GHz
18 GHz
25 W
30 dB
27%
22 V
MMIC Bare Die
Die
Product SKU
Buy Online
Request Sample
Data Sheet
Recommended For New Design?
Technology
Frequency Min
Frequency Max
Peak Output Power
Gain
Efficiency
Operating Voltage
Form
Package Type
CMPA601J025D
Yes
GaN on SiC
6 GHz
18 GHz
25 W
30 dB
27%
22 V
MMIC Bare Die
Die
Apply Filters
Document Type
Document Name
Application Notes
Data Sheets
Technical Papers & Articles
by Raymond S. Pengelly – Simon M. Wood – James W. Milligan – Scott T. Sheppard – and William L. Pribble
Technical Papers & Articles
by Jeremy K. Fisher – Donald A. Gajewski – Thomas J. Smith
Technical Papers & Articles
by Donald A. Gajewski – Scott Sheppard – Tina McNulty – Jeff B. Barner – Jim Milligan and John Palmour
This paper reports the reliability performance of the Wolfspeed – GaN/AlGaN HEMT MMIC process technology – fabricated on 100 mm high purity semi-insulating (HPSI) 4H-SiC substrates.
Technical Papers & Articles
by Ildu Kim – Jangheon Kim – Junghwan Moon – Jungjoon Kim – and Bumman Kim
Demonstrating a highly efficient Hybrid Envelope Elimination and Restoration transmitter for IEEE 802.16e Mobile WiMAX applications using a highly efficient saturated Power Amplifier (PA). For the optimum H-EER operation – the PA has been designed to have a maximum PAE at the average Vds region by using 10 W (P3dB ) GaN High Electron Mobility Transistor.
Technical Papers & Articles
Product Catalog
Sales Terms
Document Type
Document Name
Application Notes
Data Sheets
Technical Papers & Articles
by Raymond S. Pengelly – Simon M. Wood – James W. Milligan – Scott T. Sheppard – and William L. Pribble
Technical Papers & Articles
by Jeremy K. Fisher – Donald A. Gajewski – Thomas J. Smith
Technical Papers & Articles
by Donald A. Gajewski – Scott Sheppard – Tina McNulty – Jeff B. Barner – Jim Milligan and John Palmour
This paper reports the reliability performance of the Wolfspeed – GaN/AlGaN HEMT MMIC process technology – fabricated on 100 mm high purity semi-insulating (HPSI) 4H-SiC substrates.
Technical Papers & Articles
by Ildu Kim – Jangheon Kim – Junghwan Moon – Jungjoon Kim – and Bumman Kim
Demonstrating a highly efficient Hybrid Envelope Elimination and Restoration transmitter for IEEE 802.16e Mobile WiMAX applications using a highly efficient saturated Power Amplifier (PA). For the optimum H-EER operation – the PA has been designed to have a maximum PAE at the average Vds region by using 10 W (P3dB ) GaN High Electron Mobility Transistor.
Technical Papers & Articles
Product Catalog
Sales Terms
Need information?
Ready to buy?
Find a Distributor
Want to keep in touch?

Knowledge Center

View All
highpower_wideband_lband_image
GaN on SiC

Thermal Considerations for X-Band MMICs Under CW Operation

Join Kasyap Patel of Wolfspeed for a live webinar on September 20th as we discuss GaN on SiC MMIC solutions to thermal concerns for next generation radar systems during continuous wave (CW) operation.
Register Now 
 Webinars
RF PA 101_amplifier classes image
GaN on SiC

RF Power Amplification 101: Amplifier Classes

The purpose of the RF PA is to increase the power of the RF input signal. This is achieved by applying the signal to the gate. This article compares some of the common amplifier classes, starting with the most-linear but least-efficient Class A to the still-linear (due to the ideal transistor) but more-efficient Class F and inverse-F.
Continue Reading 
 Technical Articles
xband-hero-image
GaN on SiC

Integrated Expertise Delivers the Best GaN Solutions for X-Band PAs

Gallium nitride is the undisputed technology for achieving high-efficiency operation in high-frequency applications, such as those at X-band (8–12 GHz). But device selection for X-band applications doesn’t end with choosing the material technology, because turning the bulk material characteristics into high-performance GaN on SiC devices is quite another matter.
Continue Reading 
 Technical Articles
Cree Wolfspeed Logo
FacebookTwitterLinkedInYouTube
  • Contact
  • Where to Buy
  • Document Library
  • Knowledge Center
  • News
  • Events
  • Privacy Policy
  • Terms of Use
Copyright © 2021 Cree Wolfspeed