SiC Materials

Nitride Epitaxy

Nitride Epitaxy

Wolfspeed is transitioning to a new wafer scribe format based upon SEMI specification M12-0706. This conversion, which is projected to be fully integrated in 2022, brings several improvements. The M12-based scribe will be positioned upright when the major flat or notch is oriented up, making the scribe easier to read when the wafers are loaded into cassettes. The new format includes a wafer supplier identification code, validating the wafer’s authenticity. It also includes a checksum, which is an error-detection method that prevents OCR mis-read errors and reduces the instance of processing errors associated with such event.

Proven Expertise in SiC & GaN Materials for RF Applications

With more than 30 years of development and manufacturing experience, Wolfspeed is driving innovation with the industry’s broadest range of SiC and GaN materials. Delivering semi-insulating substrates and nitride epitaxy options up to the newly available diameter of 150mm, Wolfspeed materials enable performance far exceeding that of any other technology, for telecom, aerospace, or defense applications with world-leading bandwidth, efficiency and frequency of operation.

When you partner with Wolfspeed, you get the best and most innovative materials.

HPSI and Nitride Epitaxy Line Card
Materials Catalog

Product Descriptions

Wolfspeed produces GaN, AlxGa1-xN and Al1-yInyN epitaxial layers on SiC substrates. Unless noted otherwise on the product quotation, the epitaxial layer structure will meet or exceed the following specifications (1). Contact Wolfspeed Materials Sales for specification on custom epitaxy requests. Additional comments, terms and conditions may be found in the specification document.

Nitride Epitaxial Layer Specifications – Structural

Value or Range
On-axis SiC (Semi-Insulating)
Composition (2)
AlxGa1-xN or Al1-yInyN
0 ≤ x ≤ 0.3, 0 ≤ y ≤ 0.2, certain restrictions apply
Δ x = ± 0.015
Δ y = ± 0.02
XRD peak splitting
Thickness (3)
1.0 μm to 3.0 μm GaN
0.5 nm to 1.0 μm AlN
1.0 nm to 1.0 μm AlxGa1-xN
1.0 nm to 1.0 μm Al1-yInyN
2.0 nm to 5.0 nm GaN (Cap Layer)
5.0 nm to 100 nm SiN (Cap Layer)
thickness within
± 15% of target
thickness and
<10%. (4)
X-ray or white light
GaN Crystallinity
< 250 arcsec (3 μm layer on SiC substrate)
XRD (0006) FWHM
(center point)
< 500 arcsec (3 μm layer on SiC substrate)
XRD (0006) FWHM
(center point) (5)
Visible Defects
< 50/cm2
microscopy at 50x
in cross pattern
with 5 mm edge

Nitride Epitaxial Layer Specifications – Electrical

Value or Range
Dopant type
n-type (Si)
HEMT buffer (Fe and/or C)
Carrier concentration
(unintentionally doped)
< 1E16/cm3, n-type
Carrier concentration
(n-type, Si doped)
1E16 to 2E19/cm3
± 50%
CV (wafer center,
room temperature)
Carrier concentration
of HEMT structure
(25 nm Al0.25Ga0.75N)
carrier concentration
Mobility of HEMT structure
μ ≥ 1500 cm2 V-1 s-1
(25 nm Al0.25Ga0.75N)
Sheet resistivity
< 5% uniformity
sheet resistivity


  1. Certain additional restrictions may apply and will be presented on the product quotation.
  2. Quaternary compositions available upon special request.
  3. Range given for undoped layers. Maximum achievable thickness for doped layers or heterostructures will be reduced.
  4. Precision specification applies only to layers ≥ 0.01 μm thick. Uniformity = (100 x standard deviation / mean). Edge Exclusion is applied.
  5. Please specify epitaxy structure details upon submission of RFQ (i.e. thickness, doping, composition, for each layer).
  6. Custom structures available. Contact Wolfspeed Materials Sales for more information on custom epitaxy requests.

Tools & Support

Knowledge Center

Power Modules

Introducing EAB450M12XM3: Wolfspeed’s first Automotive-Qualified Silicon Carbide Power Module

Wolfspeed’s auto qualified EAB450M12XM3 power module maximizes the benefits of Silicon Carbide. At half the weight and volume of a standard 62 mm module, the XM3 enables high efficiency and high power density in the most demanding automotive applications.
Continue Reading 
 Technical Articles

Meet the Latest Energy-Efficiency Standards with Wolfspeed Silicon Carbide

This article highlights the direct impact of new global efficiency standards and the undisputed need for Silicon Carbide as the enabling semiconductor technology that has the capacity to meet these standards for high efficiency and reliability. Wolfspeed not only helps designers meet the latest standards but plan for upcoming requirements in their development roadmaps across key applications, including motors, switch-mode power supplies and EV charging infrastructures.
Continue Reading 
 Technical Articles

Simplifying Global Equipment Designs by Utilizing Silicon Carbide

Astrodyne TDI (ATDI) is leveraging Wolfspeed’s Silicon Carbide technology to address key challenges when designing equipment for a global market. Read on to see how ATDI’s Kodiak power supply and Wolfspeed’s Silicon Carbide gives customers the ability to use the same control and power topology across different utility voltage levels, ensuring high performance regardless of the input voltage level.
Continue Reading 
 Technical Articles
Wolfspeed Logo
  • Contact
  • Where to Buy
  • Document Library
  • Knowledge Center
  • News
  • Events
  • Privacy Policy
  • Terms of Use
Copyright © 2022 Wolfspeed, Inc.