Contact
中文
Silicon Carbide

Silicon Carbide’s Unique Properties and Applications

Jun 13, 2019
Share on FacebookShare on TwitterShare on LinkedInShare in an email
Home
Silicon Carbide’s Unique Properties and Applications

In the BaSiCs of SiC blog series, we’ll explore many different features of silicon carbide. Let’s kick things off with a quick primer on this unusual material’s properties and applications.

Although it might seem like a recent innovation, Silicon Carbide (SiC) has actually been in use since the late 1800s, beginning as an abrasive material and later finding applications in a wide variety of industries (including semiconductors). The wide-ranging use of SiC is a natural consequence of the material’s extraordinary physical traits.

SiC’s Fascinating Properties

SiC, also known as carborundum, is a combination of silicon and carbide in a crystalline structure, and there are about 250 different crystalline forms in which SiC can be found. Silicon carbide can take on many different forms: individual grains of SiC can be sintered together to form strong ceramics; fibers of SiC can be added to a polymer matrix to form a composite material, and large, individual crystals of silicone can be grown for use in semiconductor applications. SiC also appears in nature, although rarely, in the form of the mineral moissanite.

Lightweight and Stable

SiC has an average density on the order of 3 g/cm3, which makes it relatively light in weight. It is chemically inert and corrosion-resistant, and it is not attacked by any acids, molten salts, or alkalis even when exposed to temperatures up to 800°C. SiC is an extremely hard and strong material (which makes sense considering its application as an abrasive material).

SiC has a very low coefficient of thermal expansion, which means that even when exposed to extreme temperature changes, it remains dimensionally stable (e.g., it will not significantly expand when exposed to heat or significantly contract when exposed to cold). It also has excellent thermal shock resistance.

A Sublime Material

One of the most fascinating properties of silicon carbide is that it is capable of sublimation: when temperatures are sufficiently high enough, SiC skips the liquid form and goes directly to a gaseous form. This means that it turns into a vapor instead of melting. The sublimation temperature of silicon carbide (where this solid-to-vapor transition takes place) is around 2700°C (which is around half the surface temperature of the sun).

As a semiconductor material, metallic conductivity can be achieved by heavy doping with nitrogen, aluminum, or boron. It can be doped n-type by phosphorous or nitrogen and p-type of gallium, aluminum, boron, or beryllium.

The Many Applications of Silicon Carbide

Besides its applications in semiconducting, SiC is also used for products such as bulletproof vests, ceramic plates, thin filament pyrometry, foundry crucibles, and car clutches. In terms of electrical applications, one of its earliest uses was as a lightning arrester in a high-voltage power system as engineers and scientists recognized that silicon carbide performs well even in the presence of high voltages and high temperatures. More modern applications of silicon carbide in electronics include Schottky diodes, MOSFETs, and power electronics.

Whether it’s being used as an abrasive polishing material or as the semiconductor for a Schottky diode, SiC is certainly robust and multi-faceted. Sublimation, extreme chemical inertness and corrosion resistance, excellent thermal properties, and its ability to be grown as a single-crystal structure are just a few of its outstanding properties.

Stay Informed
Need information?
Contact Us
Stay Informed
Need information?

More Articles

View All
Power
|
Power Modules

Introducing EAB450M12XM3: Wolfspeed’s first Automotive-Qualified Silicon Carbide Power Module

Wolfspeed’s auto qualified EAB450M12XM3 power module maximizes the benefits of Silicon Carbide. At half the weight and volume of a standard 62 mm module, the XM3 enables high efficiency and high power density in the most demanding automotive applications.
Continue Reading 
 Technical Articles

Meet the Latest Energy-Efficiency Standards with Wolfspeed Silicon Carbide

This article highlights the direct impact of new global efficiency standards and the undisputed need for Silicon Carbide as the enabling semiconductor technology that has the capacity to meet these standards for high efficiency and reliability. Wolfspeed not only helps designers meet the latest standards but plan for upcoming requirements in their development roadmaps across key applications, including motors, switch-mode power supplies and EV charging infrastructures.
Continue Reading 
 Technical Articles

Simplifying Global Equipment Designs by Utilizing Silicon Carbide

Astrodyne TDI (ATDI) is leveraging Wolfspeed’s Silicon Carbide technology to address key challenges when designing equipment for a global market. Read on to see how ATDI’s Kodiak power supply and Wolfspeed’s Silicon Carbide gives customers the ability to use the same control and power topology across different utility voltage levels, ensuring high performance regardless of the input voltage level.
Continue Reading 
 Technical Articles
Wolfspeed Logo
FacebookTwitterLinkedInYouTube
  • Contact
  • Where to Buy
  • Document Library
  • Knowledge Center
  • News
  • Events
  • Privacy Policy
  • Terms of Use
Copyright © 2022 Wolfspeed, Inc.