Skip to Main Content
Contact
浏览产品 (中文)
Silicon Carbide

Silicon Carbide as a Semiconductor

Jan 09, 2020
  • Share on Facebook
  • Share on Twitter
  • Share on LinkedIn
  • Share in an email

As we continue with the BaSiCs of SiC blog series, we’re going to take a look at SiC as a semiconductor material and what properties make it special.

What is a Semiconductor?

Semiconductors are an essential component of just about every electronic circuit you encounter. Semiconductors are a special type of material that have an electrical conductivity that lies somewhere between conductors (e.g., metals) and insulators (e.g., ceramics). Semiconductors also having varying electrical conductivity based on operating temperatures or from impurities introduced in manufacturing.

Semiconductors can be made from pure elements, with Silicon and Germanium being the most common; however, they can also be made from compounds like Silicon Carbide (SiC) or Gallium arsenide (GaAs). The earliest semiconductor devices were primarily made from Germanium but, later on, Silicon (Si) became the most widely used semiconductor material. However, Si has competition: SiC, or Silicon Carbide.

The Unique Properties of SiC

There are several different polytypes of SiC, but the one most often used for power electronics is 4H-SiC (which has a hexagonal crystalline structure). Let’s take a look at some of the critical properties of SiC, such as critical breakdown strength, bandgap, and thermal conductivity.

Critical Breakdown Strength

SiC has a high critical breakdown strength. This translates into reducing the package insulation while retaining the same voltage rating, the ability to withstand a higher voltage without changing the package size, and creating components with blocking voltages that are an entire order of magnitude higher than what is possible with Si.

Bandgap

One of the key properties of a semiconductor is its energy gap (or bandgap). In a semiconductor, electrons are confined to a number of energy bands -- and electrons cannot move outside of regions from those bands. The bandgap is the energy difference between the top of the valence band and the bottom of the conduction band. Bandgap is measured in eV (electron volts, a unit of energy equal to approximately 1.602×10−19 J), and the bandgap of SiC is 3.26, compared to that of Si at 1.12.

Wider bandgap semiconductors such as SiC make it possible for electronics (especially power electronics) to be faster, smaller, and more reliable while operating at higher voltages, temperatures, and frequencies compared to other semiconductor materials such as Si and GaAs.

Thermal Conductivity

Thermal conductivity is an important property of semiconductors: the higher the thermal conductivity, the easier it is for the semiconductor to dissipate any heat that is generated. This, in turn, allows the components made from semiconductors with good thermal conductivity to be smaller, and it has a positive impact on the thermal management of the systems that the components are implemented within. The thermal conductivity of SiC is approximately 3x that of Si.

Silicon Carbide as a Semiconductor

We’ve talked about how SiC has been used for many different tasks, including bulletproof vests, an abrasive material, and thin filament pyrometry — but many of SiC’s most exciting possibilities come from its properties as a semiconducting material for applications such as MOSFETsSchottky diodes, and power electronics. Because of these properties, SiC is able to outperform materials such as Si, Ge, or GaAs.

Stay Informed
Need information?
Contact Us
Stay Informed
Need information?

More Articles

View All
Power
|
Silicon Carbide

In The Studio: Challenges and Solutions in Scaling Up Silicon Carbide Production

Silicon Carbide raises the bar for what the world’s innovators can achieve, but there are unique challenges to producing it in high volume. Join Guy Moxey and Cengiz Balkas, Wolfspeed Materials Senior VP & GM, for a look at how Wolfspeed’s first-hand experience has made us an industry leader in the production of high-quality Silicon Carbide.
Continue Reading 
 In The Studio

Unlock a New Era of EV Efficiency with Wolfspeed Silicon Carbide

Electric vehicle adoption is growing exponentially and factors like climate change are driving a global shift to emissions-free motoring. Reaching true net zero requires a shift in how we engineer EV powertrains as well as the effectiveness of the systems that we use to charge them. Learn more about the advantages of Wolfspeed Silicon Carbide technologies in EVs.
Continue Reading 
 Infographic

The Batteries that Power EVs

This chapter of Wolfspeed’s What’s Under the Hood series shines the light on the powerhouse of BEVs — the battery pack — to reveal cell characteristics, battery chemistries, and architectures, as well as hazards, protections, and control.
Continue Reading 
 Blog

Footer

Wolfspeed Logo

Social Media

  • Facebook
  • Twitter
  • LinkedIn
  • YouTube
Copyright © 2022 Wolfspeed, Inc.